Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 850
1.
Int J Immunopathol Pharmacol ; 38: 3946320241240706, 2024.
Article En | MEDLINE | ID: mdl-38712735

Introduction: Bladder cancer represents a significant public health concern with diverse genetic alterations influencing disease onset, progression, and therapy response. In this study, we explore the multifaceted role of Solute Carrier Family 31 Member 1 (SLC31A1) in bladder cancer, a pivotal gene involved in copper homeostasis. Methods: Our research involved analyzing the SLC31A1 gene expression via RT-qPCR, promoter methylation via targeted bisulfite sequencing, and mutational status via Next Generation Sequencing (NGS) using the clinical samples sourced by the local bladder cancer patients. Later on, The Cancer Genome Atlas (TCGA) datasets were utilized for validation purposes. Moreover, prognostic significance, gene enrichment terms, and therapeutic drugs of SLC31A1 were also explored using KM Plotter, DAVID, and DrugBank databases. Results: We observed that SLC31A1 was significantly up-regulated at both the mRNA and protein levels in bladder cancer tissue samples, suggesting its potential involvement in bladder cancer development and progression. Furthermore, our investigation into the methylation status revealed that SLC31A1 was significantly hypomethylated in bladder cancer tissues, which may contribute to its overexpression. The ROC analysis of the SLC31A1 gene indicated promising diagnostic potential, emphasizing its relevance in distinguishing bladder cancer patients from normal individuals. However, it is crucial to consider other factors such as cancer stage, metastasis, and recurrence for a more accurate evaluation in the clinical context. Interestingly, mutational analysis of SLC31A1 demonstrated only benign mutations, indicating their unknown role in the SLC31A1 disruption. In addition to its diagnostic value, high SLC31A1 expression was associated with poorer overall survival (OS) in bladder cancer patients, shedding light on its prognostic relevance. Gene enrichment analysis indicated that SLC31A1 could influence metabolic and copper-related processes, further underscoring its role in bladder cancer. Lastly, we explored the DrugBank database to identify potential therapeutic agents capable of reducing SLC31A1 expression. Our findings unveiled six important drugs with the potential to target SLC31A1 as a treatment strategy. Conclusion: Our comprehensive investigation highlights SLC31A1 as a promising biomarker for bladder cancer development, progression, and therapy.


Copper Transporter 1 , DNA Methylation , Disease Progression , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Copper Transporter 1/genetics , Copper Transporter 1/metabolism , Gene Expression Regulation, Neoplastic , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Promoter Regions, Genetic , Mutation , Middle Aged , Prognosis , Aged , Up-Regulation
2.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724505

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
4.
Sci Rep ; 14(1): 10954, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740797

Temporal focusing two-photon microscopy has been utilized for high-resolution imaging of neuronal and synaptic structures across volumes spanning hundreds of microns in vivo. However, a limitation of temporal focusing is the rapid degradation of the signal-to-background ratio and resolution with increasing imaging depth. This degradation is due to scattered emission photons being widely distributed, resulting in a strong background. To overcome this challenge, we have developed multiline orthogonal scanning temporal focusing (mosTF) microscopy. mosTF captures a sequence of images at each scan location of the excitation line. A reconstruction algorithm then reassigns scattered photons back to their correct scan positions. We demonstrate the effectiveness of mosTF by acquiring neuronal images of mice in vivo. Our results show remarkable improvements in in vivo brain imaging with mosTF, while maintaining its speed advantage.


Brain , Animals , Brain/diagnostic imaging , Brain/metabolism , Mice , Algorithms , Microscopy, Fluorescence, Multiphoton/methods , Neurons/metabolism , Image Processing, Computer-Assisted/methods
5.
Brain ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38701344

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

6.
Article En | MEDLINE | ID: mdl-38699970

The Rib domain, which is often found as tandem-repeat structural modules in surface proteins of Gram-positive bacteria, plays important roles in mediating interactions of bacteria with their environments and hosts. A comprehensive structural analysis of various Rib domains is essential to fully understand their impact on the structure and functionality of these bacterial adhesins. To date, structural information has been limited for this expansive group of domains. In this study, the high-resolution crystal structure of the second member of the long Rib domain, a unique subclass within the Rib-domain family, derived from Limosilactobacillus reuteri is presented. The data not only demonstrate a highly conserved structure within the long Rib domain, but also highlight an evolutionary convergence in structural architecture with other modular domains found in cell-adhesion molecules.

7.
J Magn Reson Imaging ; 2024 May 13.
Article En | MEDLINE | ID: mdl-38738786

BACKGROUND: Clear cell likelihood score (ccLS) is reliable for diagnosing small renal masses (SRMs). However, the diagnostic value of Clear cell likelihood score version 1.0 (ccLS v1.0) and v2.0 for common subtypes of SRMs might be a potential score extension. PURPOSE: To compare the diagnostic performance and interobserver agreement of ccLS v1.0 and v2.0 for characterizing five common subtypes of SRMs. STUDY TYPE: Retrospective. POPULATION: 797 patients (563 males, 234 females; mean age, 53 ± 12 years) with 867 histologically proven renal masses. FIELD STRENGTH/SEQUENCES: 3.0 and 1.5 T/T2 weighted imaging, T1 weighted imaging, diffusion-weighted imaging, a dual-echo chemical shift (in- and opposed-phase) T1 weighted imaging, multiphase dynamic contrast-enhanced imaging. ASSESSMENT: Six abdominal radiologists were trained in the ccLS algorithm and independently scored each SRM using ccLS v1.0 and v2.0, respectively. All SRMs had definite pathological results. The pooled area under curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the diagnostic performance of ccLS v1.0 and v2.0 for characterizing common subtypes of SRMs. The average κ values were calculated to evaluate the interobserver agreement of the two scoring versions. STATISTICAL TESTS: Random-effects logistic regression; Receiver operating characteristic analysis; DeLong test; Weighted Kappa test; Z test. The statistical significance level was P < 0.05. RESULTS: The pooled AUCs of clear cell likelihood score version 2.0 (ccLS v2.0) were statistically superior to those of ccLS v1.0 for diagnosing clear cell renal cell carcinoma (ccRCC) (0.907 vs. 0.851), papillary renal cell carcinoma (pRCC) (0.926 vs. 0.888), renal oncocytoma (RO) (0.745 vs. 0.679), and angiomyolipoma without visible fat (AMLwvf) (0.826 vs. 0.766). Interobserver agreement for SRMs between ccLS v1.0 and v2.0 is comparable and was not statistically significant (P = 0.993). CONCLUSION: The diagnostic performance of ccLS v2.0 surpasses that of ccLS v1.0 for characterizing ccRCC, pRCC, RO, and AMLwvf. Especially, the standardized algorithm has optimal performance for ccRCC and pRCC. ccLS has potential as a supportive clinical tool. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.

8.
ACS Appl Bio Mater ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38651918

The combination of small-interfering RNA (siRNA)-mediated gene silencing and chemotherapeutic agents for lung cancer treatment has attracted widespread attention in terms of a greater therapeutic effect, minimization of systemic toxicity, and inhibition of multiple drug resistance (MDR). In this work, three amphiphiles, CBN1-CBN3, were first designed and synthesized as a camptothecin (CPT) conjugate and gene condensation agents by the combination of CPT prodrugs and di(triazole-[12]aneN3) through the ROS-responsive phenylborate ester and different lengths of alkyl chains (with 6, 9, 12 carbon chains for CBN1-CBN3, respectively). CBN1-CBN3 were able to be self-assembled into liposomes with an average diameter in the range of 320-240 nm, showing the ability to effectively condense siRNA. Among them, CBN2, with a nine-carbon alkyl chain, displayed the best anticancer efficiency in A549 cells. In order to give nanomedicines a stealth property and PEGylation/dePEGylation transition, a GSH-responsive PEGylated TPE derivative containing a disulfide linkage (TSP) was further designed and prepared. A combination of CBN2/siRNA complexes and DOPE with TSP resulted in GSH/ROS dual-responsive lipid-polymer hybrid nanoparticles (CBN2-DP/siRNA NPs). In present GSH and H2O2, CBN2-DP/siRNA NPs were decomposed, resulting in the controlled release of CPT drug and siRNA. In vitro, CBN2-DP/siPHB1 NPs showed the best anticancer activity for suppression of about 75% of A549 cell proliferation in a serum medium. The stability of CBN2-DP/siRNA NPs was significantly prolonged in blood circulation, and they showed effective accumulation in the A549 tumor site through an enhanced permeability and retention (EPR) effect. In vivo, CBN2-DP/siPHB1 NPs demonstrated enhanced synergistic cancer therapy efficacy and tumor inhibition as high as 71.2%. This work provided a strategy for preparing lipid-polymer hybrid NPs with GSH/ROS dual-responsive properties and an intriguing method for lung cancer therapy.

9.
Sci Bull (Beijing) ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38637226

Currently, clinically available coronary CT angiography (CCTA) derived fractional flow reserve (CT-FFR) is time-consuming and complex. We propose a novel artificial intelligence-based fully-automated, on-site CT-FFR technology, which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional (3D) computational fluid dynamics. A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve (FFR) within 90 d were collected for diagnostic performance evaluation. For Cohort 2, a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed. In Cohort 3, the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated. The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level. Compared with the manually dependent CT-FFR techniques, the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1. This CT-FFR technique has a highly successful (> 99%) calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain. Thus, the novel artificial intelligence-based fully automated, on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.

10.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671389

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Cell Movement , Cell Proliferation , Desmocollins , Desmoglein 2 , Triple Negative Breast Neoplasms , Humans , Desmocollins/metabolism , Desmocollins/genetics , Desmoglein 2/metabolism , Desmoglein 2/genetics , Female , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , beta Catenin/metabolism , Signal Transduction
11.
Int J Gen Med ; 17: 1533-1543, 2024.
Article En | MEDLINE | ID: mdl-38680194

Purpose: The association between serum uric acid (SUA) and atrial fibrillation (AF) has been widely focused on and studied in recent years. However, the exact association between SUA and AF is unclear, and the effect of gender on the association between SUA levels and AF has been controversial. This study aimed to investigate the association between SUA levels and non-valvular AF (NVAF) and the potential effect of gender on it. Patients and Methods: A total of 866 NVAF patients (463 males, age 69.44 ± 8.07 years) and 646 sex-matched control patients in sinus rhythm, with no history of arrhythmia were included in this study. t-test, ANOVA, and chi-square test were used for baseline data analysis. The receiver operating characteristic curve, logistic regression and Pearson correlation analysis were used for correlation analysis. Results: Compared to controls, NVAF patients exhibited higher SUA (P<0.001). After adjusting for confounders of NVAF, SUA remained significantly associated with NVAF, regardless of gender (OR= 1.31, 95% CI 1.18-1.43, P<0.001). SUA demonstrated higher predictability and sensitivity in predicting the occurrence of female NVAF compared to male (area under the curve was 0.68 (95% CI 0.64-0.72, P<0.001), sensitivity 87.3%), with the optimal cut-off point identified as 5.72 mg/dL. Furthermore, SUA levels correlated with APOA1, Scr and NT-proBNP in NVAF patients. SUA levels varied significantly among NVAF subtypes. Conclusion: High SUA levels were independently associated with NVAF, regardless of gender. SUA exhibited higher predictability and sensitivity in predicting the occurrence of NVAF in females compared to males. High SUA levels may affect other NVAF-related factors and participate in the pathophysiological process of NVAF.

12.
J Am Chem Soc ; 146(17): 11906-11923, 2024 May 01.
Article En | MEDLINE | ID: mdl-38629727

The complex and dynamic compositions of biofilms, along with their sophisticated structural assembly mechanisms, endow them with exceptional capabilities to thrive in diverse conditions that are typically unfavorable for individual cells. Characterizing biofilms in their native state is significantly challenging due to their intrinsic complexities and the limited availability of noninvasive techniques. Here, we utilized solid-state nuclear magnetic resonance (NMR) spectroscopy to analyze Bacillus subtilis biofilms in-depth. Our data uncover a dynamically distinct organization within the biofilm: a dominant, hydrophilic, and mobile framework interspersed with minor, rigid cores of limited water accessibility. In these heterogeneous rigid cores, the major components are largely self-assembled. TasA fibers, the most robust elements, further provide a degree of mechanical support for the cell aggregates and some lipid vesicles. Notably, rigid cell aggregates can persist even without the major extracellular polymeric substance (EPS) polymers, although this leads to slight variations in their rigidity and water accessibility. Exopolysaccharides are exclusively present in the mobile domain, playing a pivotal role in its water retention property. Specifically, all water molecules are tightly bound within the biofilm matrix. These findings reveal a dual-layered defensive strategy within the biofilm: a diffusion barrier through limited water mobility in the mobile phase and a physical barrier posed by limited water accessibility in the rigid phase. Complementing these discoveries, our comprehensive, in situ compositional analysis is not only essential for delineating the sophisticated biofilm architecture but also reveals the presence of alternative genetic mechanisms for synthesizing exopolysaccharides beyond the known pathway.


Bacillus subtilis , Biofilms , Magnetic Resonance Spectroscopy , Bacillus subtilis/chemistry , Bacillus subtilis/metabolism , Magnetic Resonance Spectroscopy/methods , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism
13.
Int J Surg ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38597388

BACKGROUND: The efficacy of laparoscopic completion total gastrectomy (LCTG) for remnant gastric cancer (RGC) remains controversial. METHODS: The primary outcome was postoperative morbidity within 30 days after surgery. Secondary outcomes included 3-year disease-free survival (DFS), 3-year overall survival (OS), and recurrence. Inverse probability treatment weighted (IPTW) was used to balance the baseline between LCTG and OCTG. RESULTS: Final analysis included 46 patients with RGC who underwent LCTG at the FJMUUH between June 2016 and June 2020. The historical control group comprised of 160 patients who underwent open completion total gastrectomy (OCTG) in the six tertiary teaching hospitals from CRGC-01 study. After IPTW, no significant difference was observed between the LCTG and OCTG groups in terms of incidence (LCTG vs. OCTG: 28.0% vs. 35.0%, P=0.379) or severity of complications within 30 days after surgery. Compared with OCTG, LCTG resulted in better short-term outcomes and faster postoperative recovery. However, the textbook outcome rate was comparable between the two groups (45.9% vs. 32.8%, P=0.107). Additionally, the 3-year DFS and 3-year OS of LCTG were comparable to those of OCTG (DFS: log-rank P=0.173; OS: log-rank P=0.319). No significant differences in recurrence type, mean recurrence time, or 3-year cumulative hazard of recurrence were observed between the two groups (all P>0.05). Subgroup analyses and concurrent comparisons demonstrated similar trends. CONCLUSIONS: This prospective study suggested that LCTG was non-inferior to OCTG in both short- and long-term outcomes. In experienced centers, LCTG may be considered as a viable treatment option for RGC.

14.
Biomed Pharmacother ; 174: 116548, 2024 May.
Article En | MEDLINE | ID: mdl-38599064

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Drugs, Chinese Herbal , Heart Failure , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Mice , Caspase 1/drug effects , Caspase 1/metabolism , Cell Line , Chronic Disease , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Gasdermins/drug effects , Gasdermins/metabolism , Heart Failure/drug therapy , Heart Failure/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Pyroptosis/drug effects , Signal Transduction/drug effects
15.
Fitoterapia ; 175: 105982, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38685512

A phytochemical investigation on the buds of edible medicinal plant, Eugenia carvophyllata, led to the discovery of seven new compounds, caryophones A-G (1-7), along with two biogenetically-related known ones, 2-methoxy-7-methyl-1,4-naphthalenedione (8) and eugenol (9). Compounds 1-3 represent the first examples of C-5-C-1' connected naphthoquinone-monoterpene adducts with a new carbon skeleton. Compounds 4-7 are a class of novel neolignans with unusual linkage patterns, in which the C-9 position of one phenylpropene unit coupled with the aromatic core of another phenylpropene unit. The chemical structures of the new compounds were determined based on extensive spectroscopic analysis, X-ray diffraction crystallography, and quantum-chemical calculation. Among the isolates, compounds (-)-2, 3, 6, and 9 showed significant in vitro inhibitory activities against respiratory syncytial virus (RSV)-induced nitric oxide (NO) production in RAW264.7 cells.

16.
J Infect ; 88(5): 106149, 2024 May.
Article En | MEDLINE | ID: mdl-38574774

BACKGROUND: Distinguishing between nontuberculous mycobacterial (NTM) lung infections and pulmonary tuberculosis becomes challenging due to their similar clinical manifestations and radiological images. Consequently, instances of delayed diagnosis or misdiagnosis are highly frequent. A feasible and reliable indicator of the existence of NTM in the early stages of the disease would help to solve this dilemma. METHODS: In this study, we evaluated the potential of smear-positive and Xpert assay (Cepheid, USA) negative outcomes as an early indicator of possible NTM infection in a high TB-burden setting retrospectively and prospectively. RESULTS: During the study period, 12·77% (138/1081) of the smear-positive cases yielded negative outcomes with the simultaneous Xpert assay. From the 110 patients who yielded smear-positive/Xpert-negative outcomes and cultivated strain as well, 105 (95·45%) were proved to have NTM isolated. By incorporating an additional criterion of a negative result from the Interferon-gamma release assay, the accuracy of the screening method reached 100%. Regarding the NTM presence prediction value, smear-positive/Xpert-negative has a sensitivity of 24·86% (45/181) in all NTM isolated cases but 93·75-96·55% accuracy in retrospective study or 93·75% accuracy in prospective study in smear-positive NTM isolated cases. In addition, the specificity was ∼99·47% (943/948) in smear-positive tuberculosis cases. CONCLUSION: The clue of the presence of NTM could be obtained on the first day of the hospital visit due to the point of care (POC) feature of smear testing and Xpert assay. About one-fourth of the NTM-isolated patients would benefit from this rapid, convenient, and reliable screening strategy in the given circumstance. Smear-positive/Xpert-negative outcome is an early, trustable indicator that is indicative of NTM isolation.


Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Sensitivity and Specificity , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Male , Female , Retrospective Studies , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/genetics , Middle Aged , Prospective Studies , Aged , Adult , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Sputum/microbiology , Interferon-gamma Release Tests/methods , Diagnosis, Differential , Aged, 80 and over
17.
Sci Total Environ ; 927: 172376, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38604376

Biofilms are widely used and play important roles in biological processes. Low temperature of wastewater inhibits the development of biofilms derived from wastewater activated sludge. However, the specific mechanism of temperature on biofilm development is still unclear. This study explored the mechanism of temperature on biofilm development and found a feasible method to enhance biofilm development at low temperature. The amount of biofilm development decreased by approximately 66 % and 55 % at 4 °C and 15 °C, respectively, as compared to 28 °C. The cyclic dimeric guanosine monophosphate (c-di-GMP) concentration also decreased at low temperature and was positively correlated with extracellular polymeric substance (EPS) content, formation, and adhesion strength. Microbial community results showed that low temperature inhibited the normal survival of most microorganisms, but promoted the growth of some psychrophile bacteria like Sporosarcina, Caldilineaceae, Gemmataceae, Anaerolineaceae and Acidobacteriota. Further analysis of functional genes demonstrated that the abundance of functional genes related to the synthesis of c-di-GMP (K18968, K18967 and K13590) decreased at low temperature. Subsequently, the addition of exogenous spermidine increased the level of intracellular c-di-GMP and alleviated the inhibition effect of low temperature on biofilm development. Therefore, the possible mechanism of low temperature on biofilm development could be the inhibition of the microorganism activity and reduction of the communication level between cells, which is the closely related to the EPS content, formation, and adhesion strength. The enhancement of c-di-GMP level through the exogenous addition of spermidine provides an alternative strategy to enhance biofilm development at low temperatures. The results of this study enhance the understanding of the influence of temperature on biofilm development and provide possible strategies for enhancing biofilm development at low temperatures.


Bacteria , Biofilms , Cyclic GMP , Bacterial Physiological Phenomena , Cold Temperature , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Extracellular Polymeric Substance Matrix , Wastewater/microbiology
18.
ChemMedChem ; : e202300716, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38426720

The eukaryotic initiation factor 2B (eIF2B) is a key regulator in protein-regulated signaling pathways and is closely related to the function of the central nervous system. Modulating eIF2B could retard the process of neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and vanishing white matter disease (VWM) et al. Here, we designed and synthesized a series of novel eIF2B activators containing oxadiazole fragments. The activating effects of compounds on eIF2B were investigated through testing the inhibition of ATF4 expression. Of all the targeted compounds, compounds 21 and 29 exhibited potent inhibition on ATF4 expression with IC50 values of 32.43 nM and 47.71 nM, respectively, which were stronger than that of ISRIB (IC50=67.90 nM). ATF4 mRNA assay showed that these two compounds could restore ATF4 mRNA to normal levels in thapsigargin-stimulated HeLa cells. Protein Translation assay showed that both compounds were effective in restoring protein synthesis. Compound potency assay showed that both compounds had similar potency to ISRIB with EC50 values of 5.844 and 37.70 nM. Cytotoxicity assay revealed that compounds 21 and 29 had low toxicity and were worth further investigation.

19.
Fitoterapia ; 175: 105928, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38548027

α-DCs (α-dicarbonyls) have been proven to be closely related to aging and the onset and development of many chronic diseases. The wide presence of this kind of components in various foods and beverages has been unambiguously determined, but their occurrence in various phytomedicines remains in obscurity. In this study, we established and evaluated an HPLC-UV method and used it to measure the contents of four α-DCs including 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) in 35 Chinese herbs after they have been derivatized with 4-nitro-1,2-phenylenediamine. The results uncover that 3-DG is the major component among the α-DCs, being detectable in all the selected herbs in concentrations ranging from 22.80 µg/g in the seeds of Alpinia katsumadai to 7032.75 µg/g in the fruit of Siraitia grosuenorii. The contents of the other three compounds are much lower than those of 3-DG, with GO being up to 22.65 µg/g, MGO being up to 55.50 µg/g, and DA to 18.75 µg/g, respectively. The data show as well the contents of the total four α-DCs in the herbs are generally in a comparable level to those in various foods, implying that herb medicines may have potential risks on human heath in view of the α-DCs.

20.
J Psycholinguist Res ; 53(2): 22, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38446237

In order to better understand the role of syntactic similarity in a code-switched sentence, the current study explored the effect of similar and different syntactic structures on Chinese-English bilinguals' intra-sentential switching costs. L2 proficiency and switching directions as factors that potentially intervene in bilingual performance were together explored to see if there was any interaction. We manipulated the degree of syntactic similarity by utilizing clauses in active voice (greater similarity) and passive voice (lesser similarity). The study conducted a self-paced reading paradigm as a more natural language reading processing. Results showed overall longer reading times for active sentences than passive counterparts, which supported a syntactic similarity impediment rather than facilitation. The impediment seemed to be predominant irrespective of L2 proficiency. Furthermore, syntactic similarity modulated the asymmetry of switching costs between forward (L1-L2) and backward (L2-L1) direction: word RTs for the 1st and the 2nd switched word yielded greater costs in L2-L1 condition, while greater costs in L1-L2 condition was observed in 3rd switched word RTs and average RTs. The present study observed syntactic similarity impediment rather than facilitation for Chinese-English bilinguals. Notably, syntactic similarity plays a predominant role compared to L2 proficiency, and modulates the asymmetry between switching directions.


Asian People , Language , Humans , Natural Language Processing , China
...